

Contents lists available at ScienceDirect

## **Nonlinear Analysis**





# Lipschitz-like property of an implicit multifunction and its applications\*

### Thai Doan Chuong

Department of Mathematics & Applications, Saigon University, 273 An Duong Vuong Street, Ward 3, District 5, Ho Chi Minh City, Viet Nam

#### ARTICLE INFO

Article history: Received 15 June 2010 Accepted 3 June 2011 Communicated by Enzo Mitidieri

MSC: 49K40 49J52 90C29 90C26

Keywords: Implicit multifunction Parametric vector optimization Efficient solution map Lipschitz-like Coderivative

#### ABSTRACT

The aim of this work is twofold. First, we use the advanced tools of modern variational analysis and generalized differentiation to study the Lipschitz-like property of an implicit multifunction. More explicitly, new sufficient conditions in terms of the Fréchet coderivative and the normal/Mordukhovich coderivative of parametric multifunctions for this implicit multifunction to have the Lipschitz-like property at a given point are established. Then we derive sufficient conditions ensuring the Lipschitz-like property of an efficient solution map in parametric vector optimization problems by employing the above implicit multifunction results.

© 2011 Elsevier Ltd. All rights reserved.

### 1. Introduction

The paper mainly deals with the stability theory of implicit multifunctions and parametric vector optimization problems. We first give some notation and definitions.

Let X, Y be Banach spaces and (P, d) be a metric space, and let  $F: P \times X \Rightarrow Y$  be a parametric multifunction. By means of this parametric multifunction one can define an *implicit multifunction*  $G: P \Rightarrow X$  as follows:

$$G(p) := \{ x \in X \mid 0 \in F(p, x) \}. \tag{1.1}$$

Let  $K \subset Y$  be a pointed, closed and convex cone with an apex at the origin.

**Definition 1.1.** We say that  $y \in A$  is an *efficient point* of a subset  $A \subset Y$  with respect to K if and only if  $(y - K) \cap A = \{y\}$ . The set of efficient points of A is denoted by  $\text{Eff}_K A$ . We stipulate that  $\text{Eff}_K \emptyset = \emptyset$ .

Given a vector function  $f: P \times X \to Y$ , we consider the following *parametric vector optimization problem*:

$$\operatorname{Eff}_{K} \{ f(p, x) \mid x \in X \}, \tag{1.2}$$

where x is the unknown (decision variable) and  $p \in P$  a parameter.

For each  $p \in P$ , we put

$$\mathcal{F}(p) := \mathrm{Eff}_K \{ f(p, x) \mid x \in X \} \tag{1.3}$$

E-mail address: chuongthaidoan@yahoo.com.

<sup>†</sup> This work was supported in part by Joint research and training on Variational Analysis and Optimization Theory, with oriented applications in some technological areas (Viet Nam–USA).