Lipschitz-like property of an implicit multifunction and its applications*

Thai Doan Chuong

Department of Mathematics \& Applications, Saigon University, 273 An Duong Vuong Street, Ward 3, District 5, Ho Chi Minh City, Viet Nam

ARTICLE INFO

Article history:

Received 15 June 2010
Accepted 3 June 2011
Communicated by Enzo Mitidieri

MSC:

49K40
49 J 52
90C29
90C26

Keywords:

Implicit multifunction
Parametric vector optimization
Efficient solution map
Lipschitz-like
Coderivative

Abstract

The aim of this work is twofold. First, we use the advanced tools of modern variational analysis and generalized differentiation to study the Lipschitz-like property of an implicit multifunction. More explicitly, new sufficient conditions in terms of the Fréchet coderivative and the normal/Mordukhovich coderivative of parametric multifunctions for this implicit multifunction to have the Lipschitz-like property at a given point are established. Then we derive sufficient conditions ensuring the Lipschitz-like property of an efficient solution map in parametric vector optimization problems by employing the above implicit multifunction results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The paper mainly deals with the stability theory of implicit multifunctions and parametric vector optimization problems. We first give some notation and definitions.

Let X, Y be Banach spaces and (P, d) be a metric space, and let $F: P \times X \rightrightarrows Y$ be a parametric multifunction. By means of this parametric multifunction one can define an implicit multifunction $G: P \rightrightarrows X$ as follows:

$$
\begin{equation*}
G(p):=\{x \in X \mid 0 \in F(p, x)\} . \tag{1.1}
\end{equation*}
$$

Let $K \subset Y$ be a pointed, closed and convex cone with an apex at the origin.
Definition 1.1. We say that $y \in A$ is an efficient point of a subset $A \subset Y$ with respect to K if and only if $(y-K) \cap A=\{y\}$. The set of efficient points of A is denoted by $\operatorname{Eff}_{K} A$. We stipulate that $\operatorname{Eff}_{K} \emptyset=\emptyset$.

Given a vector function $f: P \times X \rightarrow Y$, we consider the following parametric vector optimization problem:

$$
\begin{equation*}
\operatorname{Eff}_{K}\{f(p, x) \mid x \in X\} \tag{1.2}
\end{equation*}
$$

where x is the unknown (decision variable) and $p \in P$ a parameter.
For each $p \in P$, we put

$$
\begin{equation*}
\mathcal{F}(p):=\operatorname{Eff}_{K}\{f(p, x) \mid x \in X\} \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: th This work was supported in part by Joint research and training on Variational Analysis and Optimization Theory, with oriented applications in some technological areas (Viet Nam-USA).

 E-mail address: chuongthaidoan@yahoo.com.

