# Nonlinear Volterra integral equations and the Schröder functional equation 

Tomasz Małolepszy<br>Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland

## ARTICLE INFO

## Article history:

Received 1 February 2010
Accepted 29 August 2010

## Keywords:

Volterra equation
Nontrivial solutions
Blow-up solutions
Schröder equation


#### Abstract

We show an interesting connection between a special class of Volterra integral equations and the famous Schröder equation. The basic results provide criteria for the existence of nontrivial as well as blow-up solutions of the Volterra equation, expressed in terms of the convergence of some integrals. Examples related to Volterra equations with power and exponential nonlinearities are presented.


© 2010 Elsevier Ltd. All rights reserved.

## 1. Introduction

In last 30 years many articles have been dedicated to second-kind nonlinear Volterra integral equations of a certain type with a convolution kernel, i.e.

$$
\begin{equation*}
u(t)=\int_{0}^{t} k(t-s) g(u(s)) \mathrm{d} s, \quad t \geq 0 \tag{1}
\end{equation*}
$$

where $g(0)=0$. Eq. (1) appears in many physical problems, for example in the theory of water percolation from cylindrical reservoirs [1] and in the theory of nonlinear waves in tubes [2]. Just from an application point of view, the problem of the existence of nontrivial solutions and blow-up solutions is very interesting. Recall that by a nontrivial solution we mean a continuous function $u$, which satisfies (1), defined on the maximal interval of its existence $[0, T)$, where $T>0$, such that $u(0)=0$ and $u(t)>0$ for $t \in(0, T)$. If additionally $u$ satisfies $\lim _{t \rightarrow T^{-}} u(t)=\infty$ for some $T<\infty$, we say that $u$ is a blow-up solution of (1).

Among the many conditions obtained for the existence of nontrivial or blow-up solutions, we can distinguish in particular two kinds of such conditions: those expressed in terms of the convergence of some series [3,4] and those expressed in terms of the convergence of some integrals [5-10]. However, there is quite a big difference between these two classes of conditions. Unlike the former, the latter are always applicable to (1) only with fixed or monotone kernel $k$ or with fixed nonlinearity $g$. In this article new integral conditions for the existence of nontrivial and blow-up solutions are established without this defect. Moreover, surprisingly, they are connected with the famous Schröder functional equation.

## 2. Basic assumptions and facts

Throughout this paper we assume that in (1) the functions $k$ and $g$ satisfy the following conditions:
$k$ is a locally integrable function such that $k(x)>0$ for $x>0$,

[^0]
[^0]:    E-mail address: t.malolepszy@wmie.uz.zgora.pl.
    0362-546X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
    doi:10.1016/j.na.2010.08.054

