Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Global existence and uniform decay of a damped Klein–Gordon equation in a noncylindrical domain

Tae Gab Ha^{a,*}, Jong Yeoul Park^b

^a Department of Mathematics, Iowa State University, Ames, IA 50011, USA ^b Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

ARTICLE INFO

Article history: Received 26 June 2010 Accepted 3 September 2010

MSC: 35B40 35L05 35L15

Keywords: Existence of a solution Energy decay Noncylindrical domain

1. Introduction

ABSTRACT

In this paper, we consider a damped Klein–Gordon equation in a noncylindrical domain. This work is devoted to proving the existence of global solutions and decay for the energy of solutions for a damped Klein–Gordon equation in a noncylindrical domain. Published by Elsevier Ltd

Let Ω be an open bounded domain of \mathbb{R}^n containing the origin and having C^2 boundary. Let $\gamma : [0, \infty[\to \mathbb{R} \text{ be a continuously differentiable function. Consider the family of subdomains <math>\{\Omega_t\}_{0 \le t < \infty}$ of \mathbb{R}^n given by $\Omega_t = T(\Omega), T : y \in \Omega \mapsto x = \gamma(t)y$, whose boundaries are denoted by Γ_t , and let \hat{O} be the noncylindrical domain of \mathbb{R}^{n+1} given by

$$\hat{\mathsf{Q}} = \bigcup_{0 \le t < \infty} \Omega_t \times \{t\}$$

with boundary

$$\hat{\Sigma} = \bigcup_{0 \le t < \infty} \Gamma_t \times \{t\}$$

In this paper, we are concerned with global existence and uniform decay of the energy to a damped Klein–Gordon equation given by

$$\begin{cases} u'' + au' - b\Delta u + k|u|^{\rho}u = f & \text{in }\hat{Q}, \\ u = 0 & \text{on }\hat{\Sigma}, \\ u(x, 0) = u_0, & u'(x, 0) = u_1 & \text{in }\Omega_0, \end{cases}$$
(1.1)

where $b \ge 1$, *a* and *k* are positive constants and ρ is a nonnegative constant. Δ stands for the Laplacian with respect to the spatial variables; ' denotes the derivative with respect to time *t*.

* Corresponding author. E-mail addresses: tgha78@gmail.com (T.G. Ha), jyepark@pusan.ac.kr (J.Y. Park).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter. Published by Elsevier Ltd doi: 10.1016/j.na.2010.09.011