Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/na

Nonlinear Analysis

Existence and multiplicity of homoclinic solutions for a class of damped vibration problems *

Xian Wu*, Wei Zhang

Department of Mathematics, Yunnan Normal University, Kunming, Yunnan 650092, PR China

ARTICLE INFO

Article history: Received 11 April 2010 Accepted 29 March 2011 Communicated by Ravi Agarwal

Keywords: Second-order system Damped vibration problem Homoclinic solution Critical point

ABSTRACT

The main purpose of this paper is to study the following damped vibration problems

$$\begin{cases} -\ddot{u}(t) - B\dot{u}(t) + A(t)u(t) = \nabla F(t, u(t)) & \text{a.e. } t \in R\\ u(t) \to 0, \quad \dot{u}(t) \to 0 & \text{as } |t| \to \infty \end{cases}$$
(1.1)

where $A = [a_{i,j}(t)] \in C(R, \mathbb{R}^{N^2})$ is an $N \times N$ symmetric matrix-valued function, $B = [b_{ij}]$ is an antisymmetry $N \times N$ constant matrix, $F \in C^1(R \times \mathbb{R}^N, R)$ and $\nabla F(t, u) := \nabla_u F(t, u)$. By a symmetric mountain pass theorem and a generalized mountain pass theorem, an existence result and a multiplicity result of homoclinic solutions of (1.1) are obtained.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Consider the following damped vibration problems

$$\begin{cases} -\ddot{u}(t) - B\dot{u}(t) + A(t)u(t) = \nabla F(t, u(t)) & \text{a.e. } t \in R \\ u(t) \to 0, \quad \dot{u}(t) \to 0 & \text{as } |t| \to \infty \end{cases}$$
(1.1)

where $A = [a_{i,j}(t)] \in C(R, \mathbb{R}^{N^2})$ is an $N \times N$ symmetric matrix-valued function, $B = [b_{ij}]$ is an antisymmetry $N \times N$ constant matrix and $F \in C^1(\mathbb{R} \times \mathbb{R}^N, \mathbb{R})$.

When *B* is a zero matrix, there are many results for problems (1.1), (for example, see [1-15]). It should be pointed out that these results were obtained under F(t, u) periodic in *t* or under the global Ambrosetti–Rabinowitz type condition

$$0 < \mu F(t, u) \le (\nabla F(t, u), u), \quad \forall t \in R \text{ and } u \in R^{\mathbb{N}} \setminus \{0\}$$

where $\mu > 2$ is a constant.

When $B \neq 0$, some of the existence and multiplicity results were obtained for periodic solutions in [16–18]. When A(t) is a positive definite matrix and $F(t, u) = a(t)|u|^{\gamma}$ (1 < γ < 2), the existence of nontrivial solution for problem (1.1) was studied in [19].

Moreover, in recent papers [20–23], by using critical point theory Xiao and Nieto [20,21] studied the existence of weak solutions of the following nonlinear impulsive differential equations

$$\begin{aligned} & -u''(t) + g(t)u'(t) + \lambda u(t) = f(t, u(t)) & \text{a.e. } t \in [0, T] \\ & -\Delta u'(t_j) = l_j(u(t_j)), \quad j = 1, 2, \dots, p, \\ & u(0) = u(T) = 0, \end{aligned}$$
(1.2)

^{*} Corresponding author. E-mail address: wuxian2001@yahoo.com.cn (X. Wu).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.03.059