Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Asymptotic behavior of positive solutions of a semilinear Dirichlet problem

Habib Mâagli

Département de Mathématiques, Faculté des Sciences de Tunis, Université Tunis- El Manar, Campus universitaire, 2092 Tunis, Tunisia

ABSTRACT

ARTICLE INFO

Article history: Received 22 December 2010 Accepted 17 January 2011

MSC: 31C15 34B27 35K10

Keywords: Green function Asymptotic behavior Dirichlet problem Subsolution Supersolution

In this paper, we study the asymptotic behavior of the unique positive classical solution to the following semilinear boundary value problem

 $\Delta u + a(x)u^{\alpha} = 0, \ x \in \Omega, \ u > 0 \text{ in } \Omega, \ u_{|\partial\Omega} = 0.$

Here Ω is a bounded $C^{1,1}$ domain, $\alpha < 1$ and the function *a* is in $C_{loc}^{\gamma}(\Omega)$, $0 < \gamma < 1$ such that there exists c > 0 satisfying for each $x \in \Omega$,

$$\frac{1}{c} \le a(x)\delta(x)^{\lambda} \exp\left(-\int_{\delta(x)}^{\eta} \frac{z(t)}{t}dt\right) \le c.$$

where $\lambda \leq 2$, $\eta > d = diam(\Omega)$, $\delta(x) = dist(x, \partial \Omega)$ and z is a continuous function on [0, n] with z(0) = 0.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be a bounded $C^{1,1}$ - domain in \mathbb{R}^n , n > 2 and let $\alpha < 1$. This paper deals with estimates of positive solutions of the following semilinear boundary value problem

$$\begin{cases} \Delta u + a(x)u^{\alpha} = 0, \quad x \in \Omega, \\ u > 0, \quad \text{in } \Omega, \quad u_{\mid \partial \Omega} = 0. \end{cases}$$
(1.1)

The existence of such solutions and their behavior have been extensively investigated by many authors (see [1-10], and the references therein). For $a \equiv 1$ on Ω and $\alpha < -1$, Crandall et al. proved in [5] that problem (1.1) has a unique classical solution u in Ω which satisfies

$$c_1(\delta(x))^{\frac{2}{1-\alpha}} \le u(x) \le c_2(\delta(x))^{\frac{2}{1-\alpha}}, \quad \text{near the boundary } \partial\Omega,$$
(1.2)

where c_1 , c_2 are positive constants and $\delta(x) = \text{dist}(x, \partial \Omega)$.

In [8], Lazer and Mckenna showed that (1.2) continuous to hold on $\overline{\Omega}$ and if instead of $a \equiv 1$ on Ω , they assume that $0 < b_1 \leq a(x)(\delta(x))^{\lambda} \leq b_2$, for all $x \in \overline{\Omega}$, where b_1, b_2 are positive constants and $\lambda \in (0, 2)$, then they proved that for $\alpha < -1$, there exist positive constants c_1 and c_2 such that

$$c_1(\delta(x))^{\frac{2}{1-\alpha}} \le u(x) \le c_2(\delta(x))^{\frac{2-\lambda}{1-\alpha}}, \text{ for } x \in \overline{\Omega}.$$

In [2,3], Brezis et al. studied the sublinear case (i.e. $0 < \alpha < 1$) with the condition that the function *a* is positive and bounded. They showed that problem (1.1) has a unique positive solution.

E-mail address: habib.maagli@fst.rnu.tn.

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.01.011