On a generalized nonlinear functional equation

Lothar Berg ${ }^{\text {a }}$, Stevo Stević ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Institut für Mathematik, Universität Rostock, D-18051 Rostock, Germany
${ }^{\text {b }}$ Mathematical Institute, Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia

A R T I CLE INFO

Article history:

Received 17 October 2010
Accepted 8 February 2011

MSC:
primary 39A13
$39 B 22$

Keywords:

Functional equation
Continuous solution

A B S T R A C T

The paper deals with the functional equation

$$
f(x)=F(f(u(x)), f(v(x)))
$$

under some special assumptions concerning the given functions u, v and F. Our main result extends some results in the literature.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

The aim of this note is to study the solutions of the functional equation

$$
\begin{equation*}
f(x)=F(f(u(x)), f(v(x))) \tag{1.1}
\end{equation*}
$$

with real x and continuous functions u and v, which is a generalization of the functional equation

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(f\left(\frac{x}{2}\right)+f\left(\frac{x+1}{2}\right)\right) \tag{1.2}
\end{equation*}
$$

[1-3] with the well-known solution

$$
\begin{equation*}
f(x)=\cot (\pi x) \tag{1.3}
\end{equation*}
$$

Concerning further linear equations (1.1) with constant coefficients, cf. paper [1] by Baron and Jarczyk as well as the references therein. Some related results can be found in survey [4].

In the proof of the first theorem we develop a method, which is called in book [5, p. 129] by Aigner and Ziegler coup de grâce, or Herglotz trick [5, pp.127,128] in connection with Eq. (1.2).

In what follows I denotes a real compact interval, and we use the decomposition $I=I_{1} \cup I_{2}$ into nondegenerated subintervals, where the intersection $I_{1} \cap I_{2}$ can be also an interval (not a point only).

Moreover, we need the following simple auxiliary result. We define \mathcal{F}_{n} as the set of all 2^{n} compositions of u and v, which are self-maps of the same set, i.e.

$$
\begin{aligned}
& \mathcal{F}_{1}=\{u, v\} \\
& \mathcal{F}_{2}=\{u \circ u, u \circ v, v \circ u, v \circ v\} \\
& \mathcal{F}_{3}=\{u \circ u \circ u, u \circ u \circ v, u \circ v \circ u, u \circ v \circ v, v \circ u \circ u, v \circ u \circ v, v \circ v \circ u, v \circ v \circ v,\}
\end{aligned}
$$

etc.

[^0]0362-546X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2011.02.007

[^0]: * Corresponding author.

 E-mail addresses: lothar.berg@uni-rostock.de (L. Berg), sstevic@ptt.rs (S. Stević).

