Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

On the extension of the solutions of Hamilton-Jacobi equations

Paolo Albano

Article history:

Keywords:

Received 8 June 2010

Viscosity solutions

Eikonal equation

Singularities

Semiconcavity

Accepted 4 October 2010

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40127 Bologna, Italy

ARTICLE INFO

ABSTRACT

We consider the viscosity solution of a homogeneous Dirichlet problem for the eikonal equation in a bounded set Ω . We suppose that the Hamiltonian, $H(x, p) = \langle A(x)p, p \rangle - 1$, is strictly convex w.r.t. the variables p and of class $C^{1,1}$ w.r.t. the variables x. Then the solution of the Dirichlet problem admits an extension to a neighbourhood of Ω , \overline{u} , such that \overline{u} is still a viscosity solution of the eikonal equation if and only if $\partial \Omega$ satisfies an exterior sphere condition. The above result, in particular, provides a characterization of the boundary singularities and a regularity theorem (up to the boundary) for the solution of the eikonal equation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the results

Let $\Omega \subset \Omega_1 \subset \mathbb{R}^n$ be two open bounded sets, i.e. Ω is an open bounded set and its closure is a subset of Ω_1 . Let u be the (continuous) viscosity solution of the eikonal equation

$$\langle A(x)Du(x), Du(x) \rangle = 1 \quad x \in \Omega, \tag{1.1}$$

with the homogeneous Dirichlet boundary condition

$$u(x) = 0 \quad x \in \partial \Omega. \tag{1.2}$$

Here $A(\cdot)$ are $n \times n$ symmetric matrices, Du is the gradient of u, and $\langle \cdot, \cdot \rangle$ is the Euclidean scalar product. We recall that a continuous function, $u : \Omega \to \mathbb{R}$, is a **viscosity solution**¹ of (1.1) iff for every φ of class C^1 and every $x \in \Omega$ such that $u - \varphi$ has a local minimum at x we have

$$\langle A(x)D\varphi(x), D\varphi(x)\rangle = 1.$$

Set

$$H(x, p) = \langle A(x)p, p \rangle - 1.$$

We assume that $A(\cdot)$ is nondegenerate: there exists $\lambda \in]0, 1]$ such that

$$\lambda I \le A(x) \le \frac{1}{\lambda} I \quad \forall x \in \Omega_1.$$
(1.3)

Here *I* is the identity matrix. We say, for short, that *H* is $C^{1,1}$ nondegenerate if condition (1.3) holds and A(x) is of class $C^{1,1}$ in Ω_1 w.r.t. the variables *x*. As usual, we denote by $B_r(x)$ the Euclidean open ball with radius *r* and center at *x*.

E-mail address: albano@dm.unibo.it.

¹ We point out that our definition of a viscosity solution is not the usual one for general first-order Hamilton–Jacobi equations. On the other hand, it is well-known (see e.g. [1]) that, in the case of Hamiltonians convex with respect to the gradient, the usual definition is equivalent to ours.