Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Global existence for nonlocal MEMS

Daniele Cassani^{a,*}, Luisa Fattorusso^b, Antonio Tarsia^c

^a Dipartimento di Matematica "Brioschi", Politecnico di Milano, P.zza L. Da Vinci 32, 20133–Milano, Italy

^b DIMET, Università Mediterranea degli Studi di Reggio Calabria, Via Graziella (loc. Feo di Vito), 89100–Reggio Calabria, Italy

^c Dipartimento di Matematica "L.Tonelli", Università di Pisa, Via F. Buonarroti 2, 56127–Pisa, Italy

ARTICLE INFO

Article history: Received 8 January 2011 Accepted 22 May 2011 Communicated by Enzo Mitidieri

MSC: 35G30 35J40 35R09

Keywords: Nonlinear nonlocal elliptic equations Steklov boundary conditions Implicit Function Theorem Fourth order integro-differential PDE MEMS and NEMS

1. Introduction

ABSTRACT

We prove the existence of solutions for a nonlocal equation arising from the mathematical modeling of MicroElectroMechanicalSystems (MEMS). The existence result, obtained within a suitable Implicit Function Theorem framework, is established under rather general boundary conditions and for bounded domains whose diameter is fairly small.

© 2011 Elsevier Ltd. All rights reserved.

Recently, a lot of attention has been devoted to the study of mathematical models which describe, with different levels of accuracy, the so-called electrostatic actuation in *MicroElectroMechanicalSystems (MEMS)*; see [1,2] and the references therein. Motivated by the mathematical interest which continues a field of research, initiated by Mignot–Puel in [3], on nonlinear problems involving nonlinearities which develop singularities; see also [4] for applications to conformal geometry, here we consider a wide class of nonlocal problems, namely the following

$$\begin{cases} \alpha \Delta^2 u = \left(\beta \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x + \gamma\right) \Delta u + \frac{\lambda f(x)}{(1 - u)^{\sigma} \left(1 + \chi \int_{\Omega} \frac{\mathrm{d}x}{(1 - u)^{\sigma}}\right)}, & x \in \Omega \\ u = \Delta u - \mathrm{d}u_v = 0, & x \in \partial\Omega, d \ge 0 \\ 0 < u < 1, & x \in \Omega \end{cases}$$
(1)

which for $\sigma \ge 2$ is a natural extension of the nonlocal MEMS problem which has been proposed in [5,1] in the case of a Coulomb potential, namely $\sigma = 2$. Here $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain, $u : \Omega \longrightarrow \mathbb{R}$ is the unknown profile of the deflecting MEMS plate, $f : \Omega \longrightarrow \mathbb{R}^+$ is a bounded function which carries dielectric properties of the material, $\lambda \ge 0$ is the drop voltage between the ground plate and the deflecting plate and for positive parameters α , β , γ , χ which

* Corresponding author.

E-mail addresses: daniele.cassani@polimi.it, Daniele.Cassani@gmail.com (D. Cassani), Luisa.Fattorusso@unnirc.it (L. Fattorusso), tarsia@dm.unipi.it (A. Tarsia).

 $^{0362\}text{-}546X/\$$ – see front matter s 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.05.060