Contents lists available at ScienceDirect

ELSEVIE

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Note on "Coupled fixed point theorems for contractions in fuzzy metric spaces"

Xing-Hua Zhu*, Jian-Zhong Xiao

College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044, PR China

ARTICLE INFO

Article history: Received 9 January 2011 Accepted 10 May 2011 Communicated by S. Ahmad

MSC: 54H25 47H10

Keywords: Fuzzy metric space Coupled fixed point Coupled common fixed point

ABSTRACT

In the paper "Coupled fixed point theorems for contractions in fuzzy metric spaces" by Sedghi et al. [S. Sedghi, I. Altun, N. Shobec, Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear Analysis 72 (2010) 1298–1304], a coupled common fixed point result was presented. However, our purpose is to show that this result and its proof are false. We give a counterexample and also explain how to correct this result. As a modification, we state and prove a coupled fixed point theorem under some hypotheses of fuzzy metric and *t*-norm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

In [1], the authors proved a coupled common fixed point theorem for contractive mappings in complete fuzzy metric spaces defined by George and Veeramani. The main result in [1] is Theorem 2.5. Unfortunately, it is false. In Section 2, we give a counterexample. In Section 3, we show that the process of the proof is false and also explain how to correct this result. In Section 4, as a modification, we state and prove a coupled fixed point theorem under some hypotheses concerning fuzzy metric and *t*-norm.

For the reader's convenience, we restate some definitions and the main result in [1] as follows.

Definition 1.1 ([1]). A binary operation $* : [0, 1]^2 \rightarrow [0, 1]$ is called a continuous *t*-norm if the following conditions are satisfied: * is associative and commutative; * is continuous; a * 1 = a for all $a \in [0, 1]$; $a * b \le c * d$, whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Definition 1.2 ([1]). The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary non-empty set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times [0, \infty)$ satisfying the following conditions, for each $x, y \in X$ and t, s > 0,

(FM-1) M(x, y, t) > 0, (FM-2) M(x, y, t) = 1 if and only if x = y,

(FM-3) M(x, y, t) = M(y, x, t),

(FM-4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$,

(FM-5) $M(x, y, \cdot) : (0, \infty) \rightarrow [0, 1]$ is continuous.

Definition 1.5 ([1]). Let (X, M, *) be a fuzzy metric space. A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if $\lim_{n\to\infty} M(x_n, x, t) = 1$ for all t > 0. A sequence $\{x_n\}$ in X is called the Cauchy sequence if for each $0 < \varepsilon < 1$ and t > 0,

^{*} Corresponding author. Fax: +86 02558731073. E-mail address: zhuxh@nuist.edu.cn (X.-H. Zhu).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.05.034