

ORIGINAL PAPER

Determination of ¹⁰B in lymphoma human cells after boron carrier treatment: comparison of ¹⁰BPA and immuno-nanoparticles

^aMarco Giovanni Persico, ^bPatrizia Chiari, ^aRaffaela Biesuz, ^aGiancarla Alberti^{*}

^aDepartment of Chemistry, ^bDepartment of Biology and Biotechnology, University of Pavia, via Taramelli 12, 27100, Pavia, Italy

Received 11 December 2012; Revised 29 April 2013; Accepted 30 April 2013

Current cancer treatments lead to insufficient distribution of the rapeutic agents in tumor cells due to their lack of selectivity often causing adverse effects in the normal cell up take of the drug. The challenge is to design the rapeutic drugs able to maximize the treatment of malignant cancers while minimizing their adverse effects. In this study, 10 B incorporation in the B chronic lymphocytic leukemia cell line MEC-1 was investigated. The cells were treated with 10 BPA with or without the anti-CD20 monoclonal antibody for different contact times. The up take of 10 B by the cells was determined by the inductively coupled plasma mass spectrometry (ICP-MS) after acid mineralization. To obtain accurate and consistent data, the analytical procedure was optimized using factorial experimental design. It was observed that BNP loaded with 10 BPA and anti-CD20 represents the best carrier system for 10 B in B cells for long time (> 10 h) whereas 10 BPA seems to be the top drug for short time (< 4 h) procedures.

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Keywords: boron-10 carrier, immuno-nanoparticles, in vitro experiments, human tumour cells

Introduction

It is well known that boron neutron capture therapy (BNCT) is based on a nuclear reaction that occurs when non-radioactive ¹⁰B is irradiated with lowenergy thermal neutrons to produce high linear energy transfer α particles and ⁷Li nuclei. BNCT is effective when a sufficient amount of ¹⁰B is selectively delivered to the tumor (around 20 µg g⁻¹), and enough thermal neutrons are absorbed by the cancer cells to sustain a lethal ¹⁰B(n, α) ⁷Li capture reaction (Barth et al., 2005). Because the high linear energy transfer (LET) particles have confined path lengths in tissue (5–9 µm), the lethality is limited to boron containing cells.

During the last 20 years, many different classes of boron delivery agents have been tested: initially boric acid and some of its derivatives were considered but with limited success due to the low selectivity and poor tumor retention (Goodwin et al., 1955). Actually, the only two drugs declared to be applicable in clinical therapy are the sodium mercaptoundecahydrododecaborate (Na₂B₁₂H₁₁SH, BSH) and a dihydroxyboryl derivative of phenylalanine called L-p-¹⁰borophenylalanine (¹⁰BPA). In particular, ¹⁰BPA (complexed with fructose to improve its water solubility) and ¹⁰BSH have been used clinically in Japan, the United States, Europe, and Argentina (Barth et al., 2005).

The major challenge in the development of boron delivery agents is to design therapeutic agents able to maximize the treatment of malignant cancers in patients while minimizing adverse effects of the drugs. Most current anticancer agents do not substantially differentiate between cancerous and normal cells, which leads to systemic toxicity and adverse effects. This lack of differentiation significantly limits the maximum allowed drug dose, but the over expression of receptors or antigens in human cancers enables their efficient uptake by receptor mediated endocytosis.

^{*}Corresponding author, e-mail: galberti@unipv.it