• prediction of sediment accumulation model for trunk sewer using multiple linear regression and neural network techniques

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1400/08/01
    • تاریخ انتشار در تی پی بین: 1400/08/01
    • تعداد بازدید: 551
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس ژورنال: 982188779475ext.258

    sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. it concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. for such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. for developing countries, inspection could prohibit the rehabilitation proceeds. in this study, the researchers proposed an alternative method for sewer sediment accumulation calculation using predictive models harnessing multiple linear regression model (mlrm) and artificial neural network (ann). al-thawra trunk sewer in baghdad city is selected as a case study area; data from a survey done on this trunk is used in the modeling process. results showed that mlrm is acceptable, with an adjusted coefficient of determination (adj. r2) in order of 89.55%. ann model found to be practical with r2 of 82.3% and fit the data better throughout its range. sensitivity analysis showed that the flow is the most influential parameter on the depth of sediment deposition.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام میکنید
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها