• adaptive regularization of weight vectors

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 1067
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     we present arow, an online learning algorithm for binary and multiclass problems that combines large margin training, confidence weighting, and the capacity to handle non-separable data. arow performs adaptive regularization of the prediction function upon seeing each new instance, allowing it to perform especially well in the presence of label noise. we derive mistake bounds for the binary and multiclass settings that are similar in form to the second order perceptron bound. our bounds do not assume separability. we also relate our algorithm to recent confidence-weighted online learning techniques. empirical evaluations show that arow achieves state-of-the-art performance on a wide range of binary and multiclass tasks, as well as robustness in the face of non-separable data.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها