• مدل بارندگی – رواناب با استفاده از تئوری موجک و شبکه های عصبی مصنوعی (مطالعه موردی هلیل رود)

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1385/02/10
    • تاریخ انتشار در تی پی بین: 1385/02/10
    • تعداد بازدید: 1038
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    ظهور تئوری های توانمند مانند منطق فازی و شبکه های عصبی مصنوعی (ann)، الگوریتم ژنتیک و اخیرا موجک تحولی عظیم در تحلیل رفتار سیستم های دینامیک در علوم مختلف مهندسی آب ایجاد کرده است. در تحقیق حاضر عملکرد شبکه عصبی پرسپترون چند لایه (mlp)، در برآورد و پیش بینی جریان روزانه رودخانه هلیل با استفاده از الگوریتم آموزشی پس انتشار خطا بررسی شده و به منظور بالا بردن راندمان عملکرد شبکه عصبی مصنوعی، داده های آموزشی و آزمون با استفاده از موجک به سیگنالهایی تفکیک شده اند (افراز گردیده اند). با استفاده از داده های موجکی شبکه را آموزش داده و سپس نتایج آزمون با عکس تبدیل موجک به حالت نرمال برگردانده شده و نتایج محاسباتی و مشاهداتی مورد ارزیابی آماری قرار گرفته اند. نتایج حاکی از بهبود عملکرد شبکه عصبی مصنوعی با استفاده از داده های موجکی می باشد.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین ژورنال ها