• numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/01/01
    • تاریخ انتشار در تی پی بین: 1390/01/01
    • تعداد بازدید: 641
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     this paper presents a formulation of the boundary-domain integral equation (bdie) and the boundary-domain integro-differential equation (bdide) methods for the numerical solution of two-dimensional mixed boundary-value problems (bvp) for a second-order linear elliptic partial differential equation (pde) with variable coefficients. the methods use a specially constructed parametrix (levi function) to reduce the bvp to a bdie or bdide. the numerical formulation of the bdide employs an approximation for the boundary fluxes in terms of the potential function within the domain cells; therefore, the solution is fully described in terms of the variation of the potential function along the boundary and domain. linear basis functions localised on triangular elements and standard quadrature rules are used for the calculation of boundary integrals. for the domain integrals, we have implemented gaussian quadrature rules for two dimensions with duffy transformation, by mapping the triangles into squares and eliminating the weak singularity in the process. numerical examples are presented for several simple problems with square and circular domains, for which exact solutions are available. it is shown that the present method produces accurate results even with coarse meshes. the numerical results also show that high rates of convergence are obtained with mesh refinement.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم