• strong stability and uniform decay of solutions to a wave equation with semilinear porous acoustic boundary conditions

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/01/01
    • تاریخ انتشار در تی پی بین: 1390/01/01
    • تعداد بازدید: 482
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    we consider a wave equation with semilinear porous acoustic boundary conditions. this is a coupled system of second and first order in time partial differential equations, with possibly semilinear boundary conditions on the interface. the results obtained are (i) strong stability for the linear model, (ii) exponential decay rates for the energy of the linear model, and (iii) local exponential decay rates for the energy of the semilinear model. this work builds on a previous result showing generation of a well-posed dynamical system. the main tools used in the proofs are (i) the stability theorem of arendt–batty, (ii) energy methods used in the study of a wave equation with boundary damping, and (iii) an abstract result of i. lasiecka applicable to hyperbolic-like systems with nonlinearly perturbed boundary conditions.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها