• statistical analysis of kernel-based least-squares density-ratio estimation

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 1106
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     the ratio of two probability densities can be used for solving various machine learning tasks such as covariate shift adaptation (importance sampling), outlier detection (likelihood-ratio test), feature selection (mutual information), and conditional probability estimation. several methods of directly estimating the density ratio have recently been developed, e.g., moment matching estimation, maximum-likelihood density-ratio estimation, and least-squares density-ratio fitting. in this paper, we propose a kernelized variant of the least-squares method for density-ratio estimation, which is called kernel unconstrained least-squares importance fitting (kulsif). we investigate its fundamental statistical properties including a non-parametric convergence rate, an analytic-form solution, and a leave-one-out cross-validation score. we further study its relation to other kernel-based density-ratio estimators. in experiments, we numerically compare various kernel-based density-ratio estimation methods, and show that kulsif compares favorably with other approaches.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها