• path-independent integral for the sharp v-notch in longitudinal shear problem

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/01/01
    • تاریخ انتشار در تی پی بین: 1392/01/01
    • تعداد بازدید: 811
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     by applying noether’s theorem to the elastic energy density in longitudinal shear problem, it is shown that its symmetry-transformations of material space can be expressed by the real and imaginary parts of an analytic function. this kind of the symmetry-transformations leads to the existence of a conservation law in material space, which does not belong to trivial conservation laws and whose divergence-free expression gives a path-independent integral. it is found that by adjusting the analytic function, a finite value can be obtained from this path-independent integral calculated around the material point with any order singularity. for a sharp v-notch placed on the edge of homogenous materials and/or the interface of bi-materials, application shows that the finite value obtained from this path-independent integral is directly related to the notch stress intensity factor (nsif) and does not depend on the location of integral endpoints chosen respectively along two traction-free surfaces of which form a notch opening angle. usability is presented in an example to estimate the nsif of a bi-material plate.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم