• phase portraits of separable hamiltonian systems

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/01/01
    • تاریخ انتشار در تی پی بین: 1390/01/01
    • تعداد بازدید: 382
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    we study a generalization of potential hamiltonian systems (h(x,y)=y2+f(x)) with one degree of freedom; namely, those with hamiltonian functions of typeh(x,y)=f(x)+g(y), which will be denoted by xh. we present an algorithm to obtain the phase portrait (including the behaviour at infinity) of xh when f and g are arbitrary polynomials. indeed, from the graphs of the one-variable functions f and g, we are able to give the full description on the poincaré disk, therefore extending the well-known method to obtain the phase portrait of potential systems in the finite plane. the fact that the phase portraits can be fully described in terms of the two one-variable real functionsf and g allows, as well, a complete study of the bifurcation diagrams in complete families of vector fields. the algorithm can be applied to study separable hamiltonian systems with one degree of freedom, which include a vast amount of examples in physical applications.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم