• supervised locally linear embedding projection (sllep) for machinery fault diagnosis

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/01/01
    • تاریخ انتشار در تی پی بین: 1390/01/01
    • تعداد بازدید: 535
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -

    following the intuition that the measured signal samples usually distribute on or near the nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, this paper proposes a new machinery fault diagnosis approach based on supervised locally linear embedding projection (sllep). the approach first performs the recently proposed manifold learning algorithm supervised locally linear embedding (slle) on the high-dimensional fault signal samples to learn the intrinsic embedded multiple manifold features corresponding to different fault modes, and map them into a low-dimensional embedded space to achieve fault feature extraction. for dealing with the new fault sample, the approach then applies local linear regression to find the projection that best approximates the implicit mapping from high-dimensional samples to the embedding. finally fault classification is carried out in the embedded manifold space. the ball bearing data and rotor bed data are both used to validate the proposed approach. the results show that the proposed approach obviously improves the fault classification performance and outperform the other traditional approaches.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم