• pairwise meta-rules for better meta-learning-based algorithm ranking

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 1063
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     in this paper, we present a novel meta-feature generation method in the context of meta-learning, which is based on rules that compare the performance of individual base learners in a one-against-one manner. in addition to these new meta-features, we also introduce a new meta-learner called approximate ranking tree forests (art forests) that performs very competitively when compared with several state-of-the-art meta-learners. our experimental results are based on a large collection of datasets and show that the proposed new techniques can improve the overall performance of meta-learning for algorithm ranking significantly. a key point in our approach is that each performance figure of any base learner for any specific dataset is generated by optimising the parameters of the base learner separately for each dataset.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها