• learning with infinitely many features

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 875
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     we propose a principled framework for learning with infinitely many features, situations that are usually induced by continuously parametrized feature extraction methods. such cases occur for instance when considering gabor-based features in computer vision problems or when dealing with fourier features for kernel approximations. we cast the problem as the one of finding a finite subset of features that minimizes a regularized empirical risk. after having analyzed the optimality conditions of such a problem, we propose a simple algorithm which has the flavour of a column-generation technique. we also show that using fourier-based features, it is possible to perform approximate infinite kernel learning. our experimental results on several datasets show the benefits of the proposed approach in several situations including texture classification and large-scale kernelized problems (involving about 100 thousand examples).

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها