همایش ، رویداد ، ژورنال
اینستاگرام تی پی بین
حوزه های تحت پوشش رویداد
  • inferring novel gene-disease associations using medical subject heading over-representation profiles

    کلمات کلیدی :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 1075
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    background: medline®/pubmed® currently indexes over 18 million biomedical articles, providing unprecedented opportunities and challenges for text analysis. using medical subject heading over-representation profiles(meshops), an entity of interest can be robustly summarized, quantitatively identifying associated biomedical termsand predicting novel indirect associations.methods: a procedure is introduced for quantitative comparison of meshops derived from a group of medline®articles for a biomedical topic (for example, articles for a specific gene or disease). similarity scores are computedto compare meshops of genes and diseases.results: similarity scores successfully infer novel associations between diseases and genes. the number of papersaddressing a gene or disease has a strong influence on predicted associations, revealing an important bias forgene-disease relationship prediction. predictions derived from comparisons of meshops achieves a mean 8% aucimprovement in the identification of gene-disease relationships compared to gene-independent baselineproperties. conclusions: meshop comparisons are demonstrated to provide predictive capacity for novel relationshipsbetween genes and human diseases. we demonstrate the impact of literature bias on the performance of genediseaseprediction methods. meshops provide a rich source of annotation to facilitate relationship discovery inbiomedical informatics.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها