• مقایسه ی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان معده

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1387/01/01
    • تاریخ انتشار در تی پی بین: 1387/01/01
    • تعداد بازدید: 814
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    سابقه و هدف: یکی از روش های آماری تحلیل داده های بقا، مدل رگرسیونی کاکس است که نیازمند پذیره هایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر به کارگیری مدل شبکه عصبی مصنوعی برای پیش بینی داده های بقا، افزایش یافته است. این مطالعه به منظور پیش بینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است.

    مواد و روش ها: طی سال های 1381 لغایت 1385، تعداد 436 بیمار مراجعه کننده با تشخیص قطعی سرطان معده که در بخش گوارش بیمارستان طالقانی تحت عمل جراحی قرار گرفتند به صورت هم گروه تاریخی مطالعه شدند. داده ها به طور تصادفی به دو گروه آموزشی و آزمایشی (اعتبارسنجی) تقسیم شدند. برای تحلیل داده ها از روش کاپلان -مایر، مدل مخاطرات متناسب کاکس و یک مدل شبکه ی عصبی مصنوعی سه لایه استفاده شد. برای مقایسه ی پیش بینی های دو مدل، از سطح زیر منحنی مشخصه عمل کرد و صحت کلاس بندی استفاده شد.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها