• strong convergence of iterative methods by strictly pseudocontractive mappings in banach spaces

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/01/01
    • تاریخ انتشار در تی پی بین: 1390/01/01
    • تعداد بازدید: 590
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    in this paper we deal with fixed point computational problems by strongly convergent methods involving strictly pseudocontractive mappings in smooth banach spaces. first, we prove that the s-iteration process recently introduced by sahu in [14] converges strongly to a unique fixed point of a mapping t, where t is κ-strongly pseudocontractive mapping from a nonempty, closed and convex subset c of a smooth banach space into itself. it is also shown that the hybrid steepest descent method converges strongly to a unique solution of a variational inequality problem with respect to a finite family of λi-strictly pseudocontractive mappings from c into itself. our results extend and improve some very recent theorems in fixed point theory and variational inequality problems. particularly, the results presented here extend some theorems of reich (1980) [1] and yamada (2001) [15] to a general class of λ-strictly pseudocontractive mappings in uniformly smooth banach spaces.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها