• an optimal liouville-type theorem of the quasilinear parabolic equation with a p-laplace operator

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/01/01
    • تاریخ انتشار در تی پی بین: 1390/01/01
    • تعداد بازدید: 542
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    in this paper, we consider nonnegative solutions of the quasilinear parabolic equation with p-laplace operator ut = div(|u|p−2u) + |u|q−1u, where p > 2 and q > p − 1. our main result is that there is no nontrivial positive bounded radial entire solution. the proof is based on intersection comparison arguments, which can be viewed as a sophisticated form of the maximum principle and has been used to deal with the semilinear heat equation by poláčik and quittner [peter poláčik, pavol quittner, a liouville-type theorem and the decay of radial solutions of a semilinear heat equation, nonlinear analysis tma 64 (2006) 1679–1689] and the porous medium equation by souplet [ph. souplet, an optimal liouville-type theorem for radial entire solutions of the porous medium equation with source, j. differential equations 246 (2009) 3980–4005].

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین ژورنال ها