• rearrangements and minimization of the principal eigenvalue of a nonlinear steklov problem

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/01/01
    • تاریخ انتشار در تی پی بین: 1390/01/01
    • تعداد بازدید: 561
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -

    this paper, motivated by del pezzo et al. (2006) , discusses the minimization of the principal eigenvalue of a nonlinear boundary value problem. in the literature, this type of problem is called steklov eigenvalue problem. the minimization is implemented with respect to a weight function. the admissible set is a class of rearrangements generated by a bounded function. we merely assume the generator is non-negative in contrast to , where the authors consider weights which are positively away from zero, in addition to being two-valued. under this generality, more physical situations can be modeled. finally, using rearrangement theory developed by geoffrey burton, we are able to prove uniqueness of the optimal solution when the domain of interest is a ball.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها
مقالات جدیدترین ژورنال ها