• a super-resolution framework for high-accuracy multiview reconstruction

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1392/07/24
    • تاریخ انتشار در تی پی بین: 1392/07/24
    • تعداد بازدید: 1322
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
     we present a variational framework to estimate super-resolved texture maps on a 3d geometry model of a surface from multiple images. given the calibrated images and the reconstructed geometry, the proposed functional is convex in the super-resolution texture. using a conformal atlas of the surface, we transform the model from the curved geometry to the flat charts and solve it using state-of-the-art and provably convergent primal–dual algorithms. in order to improve image alignment and quality of the texture, we extend the functional to also optimize for a normal displacement map on the surface as well as the camera calibration parameters. since the sub-problems for displacement and camera parameters are non-convex, we revert to relaxation schemes in order to robustly estimate a minimizer via sequential convex programming. experimental results confirm that the proposed super-resolution framework allows to recover textured models with significantly higher level-of-detail than the individual input images.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین ژورنال ها