• existence and regularity of nonnegative solution of a singular quasi-linear anisotropic elliptic boundary value problem with gradient terms

    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/01/01
    • تاریخ انتشار در تی پی بین: 1390/01/01
    • تعداد بازدید: 509
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -
    in this paper, we consider the singular quasi-linear anisotropic elliptic boundary value

    problem {f1(u)uxx + uyy + g(u)|∇u|q + f (u) = 0, (x, y) ∈ ω,

    u|∂ω = 0, (p)

    where ω is a smooth, bounded domain in r2; 0 < q < 2; f1(0) = 0, f1(t) > 0 (t ̸= 0), f1 is a smooth function in (−∞,+∞) and is a non-decreasing function in (0,+∞); g(t) ≥ 0, g is a smooth function in (−∞, 0)∪(0,+∞) and is a non-increasing function in (0,+∞); f (t) > 0, f is a smooth function in (−∞, 0)∪(0,+∞) and is a strictly decreasing function in (0,+∞). clearly, this is a boundary degenerate elliptic problem if f1(0) = 0. we show that the solution of the dirichlet boundary value problem (p) is smooth in the interior and continuous or lipschitz continuous up to the degenerate boundary and give the conditions for which gradients of solutions are bounded or unbounded. we believe that these results on regularity of the solution should be very useful.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین رویدادها