• numerical study of the kp equation for non-periodic waves

    نویسندگان :
    جزئیات بیشتر مقاله
    • تاریخ ارائه: 1390/12/01
    • تاریخ انتشار در تی پی بین: 1390/12/01
    • تعداد بازدید: 365
    • تعداد پرسش و پاسخ ها: 0
    • شماره تماس دبیرخانه رویداد: -

    the kadomtsev–petviashvili (kp) equation describes weakly dispersive and small amplitude waves propagating in a quasi-two-dimensional situation. recently a large variety of exact soliton solutions of the kp equation has been found and classified. those soliton solutions are localized along certain lines in a two-dimensional plane and decay exponentially everywhere else, and they are called line-soliton solutions in this paper. the classification is based on the far-field patterns of the solutions which consist of a finite number of line-solitons. in this paper, we study the initial value problem of the kp equation with v- and x-shape initial waves consisting of two distinct line-solitons by means of the direct numerical simulation. we then show that the solution converges asymptotically to some of those exact soliton solutions. the convergence is in a locally defined l2-sense. the initial wave patterns considered in this paper are related to the rogue waves generated by nonlinear wave interactions in shallow water wave problem.

سوال خود را در مورد این مقاله مطرح نمایید :

با انتخاب دکمه ثبت پرسش، موافقت خود را با قوانین انتشار محتوا در وبسایت تی پی بین اعلام می کنم
مقالات جدیدترین ژورنال ها